
NSEC3 Hash Performance
Yuri Schaeffer1, NLnet Labs

NLnet Labs document 2010-002 March 18, 2010

Abstract

When signing a zone with DNSSEC and NSEC3, a choice has to be made for
the key size and the number of hash iterations. We have measured the effect of
the number of hash iterations in NSEC3 in terms of maximum query load using
NSD and Unbound. This document presents the results of these measurements
and compares the cost for validating and authoritative name servers and allows
for an educated choice for these parameters.

1 Introduction

The hash calculation for NSEC3 is defined (RFC5155, Section 5, [1]) as

IH(salt, x, 0) = H(x || salt)

IH(salt, x, k) = H(IH(salt, x, k-1) || salt)

With H a hashing function, k the number of iterations, and || a concatena-
tion. The resulting hash is calculated as: IH(salt, owner name, iterations).
More iterations increase NSEC3’s resilience to dictionary attacks by increasing
the costs of generating such a dictionary, at the expense of validation cost.

The number of hash iterations is determined by the authoritative server but
will affect validators as well. Thus, when deciding on the number of NSEC3 iter-
ations one should take the performance impact of both the authoritative servers
and the validating servers in to account. To help operators make an educated
choice we will measure this performance impact by simulating a worst case sce-
nario where little caching is possible.

Research question

What is the worst case effect of the number of NSEC3 hash iterations
on the query load of a recursive name server?

2 Measurement Scope

Below the machine simulating DNS clients will be referred to as Player. The
machine capturing the responses Listener. The validating resolver will be called

1Yuri@NLnetLabs.nl

mailto:yuri@nlnetlabs.nl

2 MEASUREMENT SCOPE

Validator and the authoritative server Authority. In our setup Player and Lis-
tener are the same machine but will be addressed separately for clarity.

We want to find the maximum query load for a set of ZSK size – hash itera-
tions pair. These ranges are further defined in section 2.1.

To simulate the worst case scenario the authorative server must be provoked
to answer each query with an NXDOMAIN response with a closest encloser, a
next closer, and a wild card denial. The queries are picked in such a way that
they are never in the Validators cache. By making the zone larger than the query
sample, we reduce the chance of any other resource record being read from the
cache.

We define the maximum query load of a server as the highest query rate at
which at least 99 percent of the queries is answered.

We will test 2 different setups:

1. Player sending queries to Validator. The queries must not be (fully) cached
so Validator will have to contact Authority and verify the responses each
time.

2. Player sending directly to Authority, to ensure that both Authority and
Player can outperform Validator.

2.1 Ranges

RFC5155, Section 10.3 specifies the maximum number of hash iterations for
NSEC3 given the size of the ZSK. The key size in bits must be rounded upwards
to the nearest table (Table 1) entry or downwards if necessary. More iterations
than the corresponding number in the table MUST NOT be used. NSEC3 RRs
with more iterations MIGHT be considered insecure. This effectively puts a
maximum on the number of iterations.

Key size Iterations

1024 150
2048 500
4096 2500

Table 1: Maximum number of NSEC3 iterations for each key size.

Using this table it make sense to test the following scenarios: 1024 bit key 1–
150 iterations, 2048 bit key 1–500 iterations, and 4096 bit key 1–2500 iterations.

To get an accurate result we need quite a lot of queries to replay and even
more names in our zone. For practical purposes we decided upon a 3 to 1 ratio:
500K names in the zone, and 167K queries to be replayed.

Since signing of larges zones is computationally expensive it is not feasible
to do the whole range of iterations. We will take only 11 sample points for each
scenario. E.g. for the 1024 bit key 1, 15, 30, 45, ..., and 150 iterations.

2

4 METHOD

3 Preparation

For this measurement we need a machine in the role as authoritative name server.
We set up NSD as a root server, create a root zone and a zone file containing a
large amount of A records (the TLD zone).

The zone file should contain more names than queries to be sent, to ensure as
little caching as possible is done by Validator. We generate 500K unique names
in the form of “[a-z]{5}v.qx”, the length of every name is constant.

This zonefile must then be signed for all three key lengths and all iteration
counts. The result will be 3x11 signed zonefiles. The size of the KSK is chosen
constant at 2048 bits.

At the machine acting as validator, Unbound is installed with root hints point-
ing to Authority so that queries are directly answered. With each measurement,
Unbound is restarted to ensure the same begin state for all tests.

Player has a trace containing queries for non-existent names which are in
the zone of Authority (in the form of “[a-z]{5}i.qx”). Every query is sent via
UDP and with the DO bit set. In case the player forms a bottleneck an optional
Listener could be used to catch the responses. To prevent Player sending ICMP
for each packet it receives, “destination-unreachable” is blocked in the firewall
for outgoing traffic:

iptables -A OUTPUT -p icmp -o eth1 --icmp-type \

destination-unreachable -j DROP

Signing the zonefiles and rebuilding the NSD database is expensive but we
can do this in advance. If the keys and zones are generated first, the tasks can
be distributed over multiple machines and cores.

4 Method

A shell script running on the player performs roughly the folling actions:

Configure firewalls

For each NSD configuration C do:

Start NSD with C; Wait until NSD is ready.

Do binary search for rate R with 99% success:

(Re)start Unbound

Start Tcpdump; sleep a few seconds

Dig for SOA .

Replay at rate R

Sleep a few seconds; stop tcpdump

Calculate new R

Stop NSD

The Dig in the above code gives Unbound the chance to cache some of the root
data saving work in the first test query. Making all queries equally expensive.

3

6 RESULTS

Waiting for NSD to be ready to take queries is done by polling every thirty
seconds and test no threads are in a running state. In our environment this can
take up to 20 minutes for large databases.

5 Hardware and Software Versions

All three machines have the same operating system installed, CentOS with kernel
version 2.6.18-164.11.1.el5 and 2 Gigabytes of RAM. The machines have a dedi-
cated Gigabit network for the experiments, other communication uses a separate
control-network.

Player

• 4 cores: Intel(R) Xeon(TM) CPU 3.20GHz, 1MB cache

• Tcpreplay 3.4.3

• Tcpdump 3.9.4

Validator

• 4 cores: Intel(R) Xeon(TM) CPU 3.20GHz, 1MB cache

• Unbound: Subversion Trunk r1993. Configured to use 1 core.

Authority

• 2 cores: Intel(R) Xeon(TM) CPU 3.20GHz, 1MB cache

• NSD: Subversion Trunk r2969. Configured to use 1 core.

6 Results

The measurement results can be found in Table 3. For reference Table 2 with the
maximum queries per second for NSEC is included as well. Please keep in mind
that all these values are worst case and do not reflect real-life performance.
The data is plot in Figure 1 for Unbound, and Figure 2 for NSD.

Max qps
Key size Unbound NSD

1024 3547 46963
2048 1848 44853
4096 669 36054

Table 2: Maximum queries per second using NSEC.

4

6 RESULTS

(a) 1024 bit key

Max qps
Iterations Unbound NSD

1 3251 25400
15 2958 19336
30 2723 18476
45 2547 17461
60 2372 15898
75 2196 14023
90 2120 13320

105 1962 12382
120 1845 10273
135 1727 9648
150 1669 9179

(b) 2048 bit key

Max qps
Iterations Unbound NSD

1 1727 21298
50 1493 14492

100 1318 10898
150 1142 8789
200 1025 7461
250 967 6367
300 849 5586
350 790 5273
400 732 4804
450 732 4179
500 673 3867

(c) 4096 bit key

Max qps
Iterations Unbound NSD

1 662 20419
250 498 6914
500 381 3945
750 322 2773

1000 264 2148
1250 264 1757
1500 205 1445
1750 205 1289
2000 186 1054
2250 172 976
2500 147 898

Table 3: Maximum queries per second for different key sizes using NSEC3.

Since NSD has all the signatures precomputed and does not have to do any
validations itself, the keysize has little influence on NSD’s performance. Hashes
for non-existing names still have to be computed run-time for the next closer.
Figure 2 shows that the maximum qps is mainly a function of the number itera-
tions.

Apart from the hashing, Unbound needs to validate the signatures as well.
The graphs in Figure 1 reflect this. The validation of the signatures is compu-
tationally harder than a hashing operation and thus key size has more influence
on the performance of Unbound than iteration count.

Let us define half performance count as the number of NSEC3 hash iterations
for which the maximum qps is 50 percent of the maximum qps with 1 hash itera-
tion. An interesting observation is that on our hardware NSD’s half performance

5

6 RESULTS

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500

M
ax

im
um

 q
ue

ry
 r

at
e

[q
ps

]

Number of hash iterations k

Unbound

1024 bit key
2048 bit key
4096 bit key

Figure 1: Maximum query rates for different key sizes.

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000 2500

M
ax

im
um

 q
ue

ry
 r

at
e

[q
ps

]

Number of hash iterations k

NSD

1024 bit key
2048 bit key
4096 bit key

Figure 2: Maximum query rates for different key sizes.

count is at around 100 iterations, independent of key size. For Unbound the half
performance count is roughly 150 for a 1024 bit key, 300 for a 2048 bit key, and
600 for a 4096 bit key.

6

REFERENCES

7 Conclusion

We have two observations:

1. Even for short keys the number of iterations for NSEC3 has more impact
on NSD’s performance than on the performance of Unbound.

2. The half performance count is constant for NSD and will grow with the key
size for Unbound.

There seems to be an appropriate alignment between incurred and imposed
costs: the authoritative servers dictate these parameters but are affected the most
themselves. This means that in order to find a satisfying amount of iterations it
is sufficient to look at the performance impact of the authoritative name server,
Figure 2.

References

[1] Laurie et al., RFC5155, DNS Security (DNSSEC) Hashed Authenticated De-
nial of Existence, http://www.ietf.org/rfc/rfc5155.txt, March 2008.

7

	Introduction
	Measurement Scope
	Ranges

	Preparation
	Method
	Hardware and Software Versions
	Results
	Conclusion

